Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 26(5): 611-618, Sept.-Oct. 2016. graf
Article in English | LILACS | ID: lil-796131

ABSTRACT

ABSTRACT Uliginosin B, a phloroglucinol isolated from Hypericum polyanthemum Klotzsch ex Reichardt, Hypericaceae, has antidepressant-like effect in the forced swimming test in rodents and inhibits monoamines neuronal reuptake without binding to their neuronal carriers. Studies showed the involvement of Na+,K+-ATPase brain activity in depressive disorders, as well as the dependence of neuronal monoamine transport from Na+ gradient generated by Na+,K+-ATPase. This study aimed at evaluating the effect of uliginosin B on Na+,K+-ATPase activity in mice cerebral cortex and hippocampus (1 and 3 h after the last administration) as well as the influence of veratrine, a Na+ channel opener, on the antidepressant-like effect of uliginosin B. Mice were treated (p.o.) with uliginosin B single (10 mg/kg) or repeated doses (10 mg/kg/day, 3 days). Acute administration reduced the immobility in the forced swimming test and tail suspension test and increased Na+,K+-ATPase activity in cerebral cortex 1 h after treating, whereas the repeated treatment induced the antidepressant-like effect and increased the Na+,K+-ATPase activity at both times evaluated. None treatment affected the hippocampus enzyme activity. Veratrine pretreatment prevented uliginosin B antidepressant-like effect in the forced swimming test, suggesting the involvement of Na+ balance regulation on this effect. Altogether, these data indicate that uliginosin B reduces the monoamine uptake by altering Na+ gradient.

2.
J. inborn errors metab. screen ; 4: e160019, 2016. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1090906

ABSTRACT

Abstract Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessively inherited disorder of the metabolism of creatine that leads to depleted levels of creatine and excessive concentrations of guanidinoacetate (GAA). Patients affected develop neurological symptoms during childhood, such as muscular hypotonia, involuntary extrapyramidal movements, convulsions, slurred speech, and even autism. Although the pathophysiology of GAMT deficiency is unclear, neurological dysfunction is commonly found in this disease, and it has been mainly attributed to a reduction in creatine or/and an increase in GAA levels. Reports from literature suggest that GAA may interfere with neuronal γ-aminobutyric acid (GABA) receptors type A and cause epilepsy in human. Preclinical studies show that GAA increases free radical formation and decreases brain antioxidant defenses, inducing alteration in oxidative status. Guanidinoacetate also impairs energy metabolism in brain. The discussion of this review focuses on various and latest studies addressing GAMT deficiency and creatine metabolism, as well as addresses the question of neurotoxicity GAA.

3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 36(2): 138-142, may. 13, 2014. graf
Article in English | LILACS | ID: lil-710202

ABSTRACT

Objectives: Fenproporex is an amphetamine-based anorectic which is rapidly converted into amphetamine in vivo. Na+, K+-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that the effects of fenproporex on brain metabolism are poorly known and that Na+, K+-ATPase is essential for normal brain function, this study sought to evaluate the effect of this drug on Na+, K+-ATPase activity in the hippocampus, hypothalamus, prefrontal cortex, and striatum of young rats. Methods: Young male Wistar rats received a single injection of fenproporex (6.25, 12.5, or 25 mg/kg intraperitoneally) or polysorbate 80 (control group). Two hours after the last injection, the rats were killed by decapitation and the brain was removed for evaluation of Na+, K+-ATPase activity. Results: Fenproporex decreased Na+, K+-ATPase activity in the striatum of young rats at doses of 6.25, 12.5, and 25 mg/kg and increased enzyme activity in the hypothalamus at the same doses. Na+, K+-ATPase activity was not affected in the hippocampus or prefrontal cortex. Conclusion: Fenproporex administration decreased Na+, K+-ATPase activity in the striatum even in low doses. However, in the hypothalamus, Na+, K+-ATPase activity was increased. Changes in this enzyme might be the result of the effects of fenproporex on neuronal excitability. .


Subject(s)
Animals , Male , Amphetamines/administration & dosage , Brain/drug effects , Brain/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Injections, Intraperitoneal , Rats, Wistar , Time Factors
4.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 35(4): 375-379, Oct-Dec. 2013. tab, graf
Article in English | LILACS | ID: lil-697327

ABSTRACT

Objective: High cardiovascular mortality rates have been reported in patients with bipolar disorder (BD). Studies indicate that matrix metalloproteinases (MMPs) are implicated in cardiovascular diseases. We evaluated the expression pattern of MMP-2 and MMP-9 in blood from patients with BD during acute mania and after euthymia, in comparison with healthy controls. Methods: Twenty patients and 20 controls were recruited and matched for sex and age. MMP messenger RNA (mRNA) levels were measured using real-time quantitative polymerase chain reaction (PCR). Body mass index (BMI) was calculated for all subjects. Results: There were no significant differences in MMP-2 and MMP-9 mRNA expression between patients and controls. mRNA levels were not significantly different during mania and euthymia. However, MMP-2 mRNA levels were negatively associated with BMI in BD patients and positively associated with BMI in controls. There was no difference in the pattern of MMP-9 expression between patients and controls. Conclusions: Our results suggest a different pattern of association between MMP-2 and BMI in BD patients as compared with controls. Despite some study limitations, we believe that the role of MMPs in BD should be further investigated to elucidate its relationship with cardiovascular risk. .


Subject(s)
Adult , Female , Humans , Male , Bipolar Disorder/enzymology , /blood , Matrix Metalloproteinase 9/blood , Bipolar Disorder/blood , Body Mass Index , Case-Control Studies , /genetics , Matrix Metalloproteinase 9/genetics , RNA, Messenger/blood , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL